
Hidden Markov Models

Sam Roweis

1 What Are HMMs ?

Hidden Markov Models (HMMs) are a class of models for mimicing the probability density of a sequence
of observed symbols. They are essentially stochastic �nite state machines which output a symbol each time
they depart from a state. By specifying the state transistion probabilities between states and the symbol
generation model for each state, we can attempt to capture the underlying structure in a large set of symbol
strings.

In general, the operational paradigm is as follows: select a starting state according to some �xed probability
distribution. At each time step, generate an output symbol by invoking the generative model of the current
state, and then transition to a new state according to a static transistion probability matrix.

Let us de�ne some notation for future convenience. Assume there are N possible states sn in our model,
and denote the set of all possible states by S where S = fs1; s2; : : : ; sNg. To this set, we will add a special
state s0 in which the model always starts as an implementational convenience { the use of this state will be
explained later. We may choose to use one of the states (usually sN ) as an end state { in this case, whenever
the model reaches this state, it stops. Let there be P possible output symbols ap which comprise the output
alphabet A = fa1; a2; : : : ; aP g. To this set, we add the special symbol a0 which represents the null output {
in other words if the model generates the symbol a0 it simply does not output anything. Each state sj has
an output distribution de�ned by the vector Aj such that the probability of emitting symbol a when we are
in state sj is given by Aj(a). Of course we require that:X

a2A

Aj(a) = 1 8sj 2 S

There is also a matrix T of transistion probabilities de�ned so that Tjk is the probability of moving into state
sk if the model is currently in state sj . Note that rows of T must sum to unity (although columns may not)
and also that the diagonal elements of T need not be zero { we allow self transitions.

In order to eliminate the need to store the distribution of starting states separately, we make use of the special
state s0. The model always starts in this state, and never returns there. Hence the entire �rst column of T
is �lled with zeros, and the �rst row of T is just the distribution over the starting states. That is, T0j is the
probability that the model will start in the \real" state sj . Also, no symbol is output when we depart from
this state; hence A0(a) is 1 for a = a0 and is 0 otherwise. All this just makes it easier to incorportae the
starting state probabilities directly into the workings of the model without having to store them separately
and do a special start-up step when we run the model.

Formally, then, we operate the model as follows. Denote the current state by x. Set x = 0. Loop until x is
the end state or until time runs out: f Generate a symbol a according to probabilities Ax(a). Pick the next
state y accoring to probabilities Txy. Set x=y.g.

1



2 Using many models to do recognition

Now we will examine how to use several HMMs in conjunction to perform a classi�cation or recognition task.

Consider: given a large number of sequences each of which have been labelled as belonging to exactly one
of several classes, how can we construct a system that tells us to which class an arbitrary new sequqnce
(previously unseen) belongs. In other words, how can we use the examples of the various classes to extract
salient features of those classes which we then make use of during recognition.

Hidden Markov models can be applied to this problem as follows: Use all of the sequences labelled as
belonging to class C to train a generative HMM for class C. Do this for each class, so that we now have as
many HMMs as classes. Now given an arbitrary sequence, one thing we could do would be to let all of the
HMMs run freely for some long period of time, observing the sequences that they produced, and then ask
which one produced our arbitrary sequence the greatest number of times. The class for which this HMM
was the model would be the class into which we classi�ed the arbitrary sequence. Conceptually this is �ne,
however in practice this is usually unrealistic because it would take forever to get good estimates. We would
like some way to answer the classi�cation question without having to run all our models explicitly and observe
them for long periods of time. The answer is to compute the likelihood that each model has of generating the
given sequence. and pick the class whose model has the largest computed likelihood. We now show how to
do this computation e�ciently.

Consider some sequence of symbols � which is � time steps long:

� : �1; �2; : : : ; ��

There are many possible state trajectories that could have caused this sequence; we wish to �nd all of them
and add up all their probabilities. Denote the set of state trajectories which could possibly have caused �

by I : fi1; i2; : : : ; iQg. Here, each element i of I is a state trajectory � states long which represents the states
the system visited (in order) while producing the symbol sequence �. The state visited at any time t in a
trajectory i is denoted by i(t). Now de�ne the likelihood that a particular model M caused the sequence �:

L�(M) = Prob[�1; �2; : : : ; �� j model M ]

=
X
i2I

T0i(1)Ai(1)(�1)Ti(1)i(2)Ai(2)(�2) : : : Ti(��1)i(�)Ai(�)(�� )

This seems like it is going to be an extremely hard factorial computation, requiring O(�N� ) multiplies and
O(N� ) additions, not including the (non-trivial) amount of work required to compute which sequences should
be in the set I . The exponential nature of this cost would make computing many such likelihoods prohibitive,
and thus severly limit the practicality of using HMMs as recognizers. Luckily, however, there is an excellent
trick (due originally to ?) which greatly saves on the cost of working this out:

De�ne �j(t) as the incremental probabilites of having reached state sj at time t having emitted the correct
symbols up till then (including �t):

��t (j) = Prob[�1; �2; : : : ; �t and state at time t = sj ]

Now induction comes to our rescue:

��1 (j) = T0jAj(�1); ��t+1(k) =

0
@X

sj2S

��t (j)Tjk

1
AAk(�t+1)

Which enables us to easily compute the desired likelihood L�(M) since we know we must end in some possible
state:

L�(M) =
X
sk2S

��� (k)

2



This can be done very cheaply, in only O(N) multiplies and O(N2�) additions, and we do not need to
compute the members of the set I .

3 Training a HMM

We have seen how if a single HMM represents a generative model for a class of sequences that we hope
captures some of the structure inherent in the class then a group of HMMs can be useful in a recognition
task. We now need to examine how to revise the parameters of a single HMM given some example sequences
in order to make it a good generative model.

The idea is to update the parameters so that the model is more likely to generate the example sequences. This
can either be done in an online way as we get each example, or once for all the examples together. Ideally,
we would like to �nd the maximum likelihood model directly but there is currently no know way to do this
e�ciently. However, the Baum-Welsh algorithm gives us a prescription that always increases the likelihood
of the model.

The alogrithm has a forward pass and a backward pass which are just like the E and M steps in EM. For
each example sequence �, do the following:

Forward pass: For each state sj at each time t, compute the incremental probabilities ��t (j) as explained
above. Backward pass: For each state sj at each time t, compute ��t (j) as the probability of starting in
state sj at time t and emitting the correct symbols after that point (including �t):

��t (j) = Prob[�t; �t+1; : : : ; �� and state at time t = sj ]

which can once again be computed with a nice induction:

��� (j) = Aj(�� ) 8sj 2 S; ��t (k) = Ak(�t)
X
sj2S

Tkj�
�
t+1(j)

Now compute 
�t (i; j) which is the expected number of transitions from state si to sj that begin at time t
(given the model M and the example sequence �):


�t (i; j) =
��t (i)Tij�

�
t+1(j)

L�(M)

The total expected number of state transistions from state si to state sj , nij for the particular example � is
given by the sum over all starting times:

n�ij =
�X

t=1


�t (i; j)

Finally, compute 
�t (j) which is the probability that the model is in state sj at time t (given the model M
and the example sequence �):


�t (j) =
��t (j)�

�
t (j)

Aj(�t)L�(M)

The new model parameters are obtained by taking the averages over all example sequences � of each of the
following quantities:

T 0
0j = 
1(j); T 0

ij = nij

,X
sj2S

nij ; A0
j(a) =

X
tj�t=a


t(j)

,
�X

t=1


t(j)

3



Each of these update rules has a nice interpretation. The new value for an initial state probability T0j is just
the average probability that the model will be in the state sj at t = 1, the �rst time step. The new transistion
probability Tij is simply the ratio of the expected number of state transitions from si to sj to the expected
total number of transistions out of state si. The new probability Aj(a) of generating the symbol a when
leaving state sj is just the ratio of the probability that the model was in state sj and generated the symbol a
to the total probability that the model was in state sj .

Baum, Soules, and Weiss [1] have proven a theorem (originally proposed by Baum and Eagon in [2]) which
guarentees that following this procedure will increase the liklihood of the model generating the example
sequences (unless the current model de�ned a critical point of the liklihood function in which case the
liklihood stays the same but does not decrease). That is, < L�(M 0) > is guarenteed to be greater than
< L�(M) > where the angled brackets denote averages over all example sequences.

4 Extending the Symbol Generation Models

In all of the discussion above, I have assumed that the values of Aj(a) were the actual probabilities of
generating the symbol a when leaving state sj . However, it is possible for each state to use a more complex
symbol generation model, such as a gaussian1 (or fancier) distribution or even a feed-forward neural network.
Then each state has its own private values for the parameters of this model (for example, the means and
variances or the network weights) which are used whenever that state must generate a symbol. While this
makes HMMs potentially much more powerful, it also makes them much more of a hassle to work with.
To answer the classi�cation question: Which model is most likely to have generated this sequence ?, we
still must be able to compute the individual symbol generation probabilities Aj(a) from these more complex
models. Even worse than this, updating our model parameters given some example sequences now becomes
very di�cult since we must �nd some to backpropagate through each state's generative model.

5 References

[1] L.E. Baum, T. Petrie, G. Soules, N. Weiss, Maximization Technique Occuring in the Statistical Analysis of
Probabilistic Functions of Markov Chains, The Annals of Mathematical Statistics 1970, Volume 41 Number
1, pp. 164-171

[2] L.E. Baum, J.A. Eagon, An Inequality with Applications to Statistical Estimation for Probabilistic Func-
tions of Markov Processes and to a Model for Ecology, Bulletin of the American Mathematical Society, May
1967, Volume 73, pp. 360-363.

1In fact, we can think of a mixture of gaussians model as a very simple HMM that has as many states as gaussians in the

model. We start in state 0, go to one of the states, generate a data point according to the private gaussian parameters of that

state, and then return to the start state. The inital state probabilities T0j are just the mixing coe�cients of the gaussians, and

the mean and variance of each gaussian are just the model parameters for each state.

4


